William T. Doan

Another Trimesterly Review of

CS 1436

Written for Dr. Brian Wescott Ricks and his 001 and 009 sections

Confidential and Proprietary — Not for External
Distribution.

This material is protected by copyright under

the Berne Convention for the Protection of Literary
and Artistic Works, as well as applicable national and
international copyright laws.

Unauthorized distribution, reproduction, or any

other use without express written permission is strictly
prohibited and may result in legal action.

October 2024

Dedication

This work is dedicated to Drs. Daniel Gibney and James Knox Willson III for
their sage advice, guidance, and tutelage.

Contents

1 Managing the Execution of Multi-Function Programs and

the Scope of Local Variables using the Stack...............
1.1 Introduction to a Stack
1.1.1 Visualizing the Stack
EXercises
1.2 When a Function is Called
1.3 When a Function Returns
1.4 Global Variables. i
2 Making Decisions i
2.1 Decision Statementsc.. i
2.2 Relational Operators.ot ..
2.3 Relational Expressions
2.3.1 Examples

2.4 Theif Statement
241 SYNEAX « ottt
2.4.2 Example
2.4.3 Flowchart Example

2.5 The if/else Statement i i,
2.5. 1 Syntax ...
2.5.2 Example

2.6 Nested if Statements i
2.6.1 Example

2.7 Logical Operatorscoiiiuiiiiiiininennnnn.
2.7.1 Operatorsoeuiuine e
2.7.2 FExample of Logical AND
2.7.3 Example of Logical OR

2.8 The switch Statement
2.8.1 SyNEaX ..ot

2.82 Example

Contents VII

Functions 9
3.1 Modular Programming o, 9
3.1.1 Advantages of Modular Programming 9
3.2 Defining and Calling Functions 9
3.2.1 Function Definition 9
3.2.2 SYNEaX . oot 9
3.3 Function Prototypes 10
3.3. 1 Syntax ... 10
332 Example ... 10
3.4 Passing Arguments to Functions........................... 10
3.4.1 Parameters and Arguments 10
342 Example 10
3.5 Passing Multiple Arguments 11
3.5.1 Example 11
3.6 Passing Data by Value 11
3.6.1 Example 11
3.7 Returning a Value from a Function 11
3.7.1 Exampleo 12
3.8 EXErCiSesottt 12
3.9 Returning a Boolean Value 12
3.91 Example 12
3.10 Default Arguments oot 12
3.10.1 Example 13
3.11 Using Reference Variables as Parameters 13
3.11.1 Example ... oo 13
Input Validation and Menus 14
4.1 Validating User Input i i 14
4.1.1 Example 14
4.2 MenUS ..ot 15
4.2.1 Menu-Driven Program Organization 15
4.2.2 Example 15
Overloading Functions and Stubs 17
5.1 Overloading Functions 17
51.1 Example 17
5.1.2 USaZe . oottt 17
5.2 Stubs and Drivers 18
5.2.1 Stubs ... 18
5.2.2 Exampleofa Stub.......... 18
5.2.3 DIiVers.ot 18

5.2.4 Exampleof a Driver 18

VIII Contents
6 Additional Topics.......... 19
6.1 Comparing Characters and Strings......................... 19
6.1.1 Comparing Charactersc..coivinao... 19
6.1.2 Example 19
6.1.3 Comparing Stringsc.cooiiiiiniiii.. 19
6.1.4 Example 19
6.2 The Conditional Operator 20
6.2.1 Syntax 20

6.2.2 Example 20

1

Managing the Execution of Multi-Function
Programs and the Scope of Local Variables
using the Stack

1.1 Introduction to a Stack

A stack is a last-in, first-out (LIFO) data structure.

e When an item is retrieved from a stack, the last item inserted (pushed)
onto the stack is the first one retrieved (popped).
e Likewise, the first element inserted is the last one retrieved.

1.1.1 Visualizing the Stack

Stack Bottom

Main

Function B Stack Growth

Function A

Top of Stack

Fig. 1.1. Stack Frames during Function Calls

Exercises

1. Explain the difference between stack and heap memory allocation.

2 1 Managing the Execution of Multi-Function Programs and the Scope of Local Variables using the Stack

2. Draw a diagram illustrating the stack frames during the execution of
nested function calls.
3. Why is it important to declare variables locally within functions?

1.2 When a Function is Called

e When a function is called, a stack frame containing the program’s return
address and the local variables of the function are pushed onto the stack.

e The stack frame of the currently executing function hides the stack frame
of the calling function, including all the local variables of that function.

e The executing function has access to its local variables which are on the
top frame of the stack.

1.3 When a Function Returns

e When the function ends execution, the return address is retrieved, and the
stack frame is popped.
Popping the stack destroys all the local variables of the function.
The stack frame of the calling function is now on top of the stack, and all
of its local variables are back in scope.

1.4 Global Variables

e Globals (constants and variables) are not stored on the stack.
e Global variables are created on the heap.
e The heap is a larger area of memory where access is less restrictive.

2

Making Decisions

2.1 Decision Statements

Decision statements (often called selection statements) allow us to specify
alternate courses of execution based upon conditions that exist at run time.
In this chapter, we will learn about:

e Additional operators used in forming decisions:
— Relational operators
— Equality and inequality operators
— Logical operators
— The conditional operator
e Decision/selection statements:
- if
— if/else
— if/else if
— switch
— The conditional statement

2.2 Relational Operators

Relational operators determine whether a specific relationship exists between
two values.

Operator Relationship Tested

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Equal to

1= Not equal to

S

4 2 Making Decisions

2.3 Relational Expressions

A relational expression is formed when two values or expressions are the
operands of a relational operator.

Relational expressions have a value of data type bool. Recall bool is a small
integer data type with two values: true (1) and false (0).

2.3.1 Examples
If x is 5 and y is 10, the following relational expressions have the value true:
=y

> X

<y
>= X

<=y

e 6 o o o
KW W< M

If chl is W’ and ch2 is ’M’, the following relational expressions have the
value false:

chl == ch2
ch2 > chil
chl < ch2
ch2 >= chi
chl <= ch2

2.4 The if Statement

The if statement allows us to place a condition on the execution of a state-
ment or block of statements.

2.4.1 Syntax

if (expression)
{
statement(s);

}

2.5 The if/else Statement 5

2.4.2 Example

[

if (score >= 70)
{

passed = true;

}

Always use braces {} to enclose the block of statements, even if there is only
one statement. This helps prevent errors and improves code readability.

2.4.3 Flowchart Example

Start

Is score >= 707 No

Yes

passed = true

End D EE—

Fig. 2.1. Flowchart of an if Statement

2.5 The if/else Statement

The if/else statement provides two possible paths of execution. One for
when the condition is true and another for when the condition is false.

o o A~ W -

~

V)

w

~ o o«

0

[SI VR

IS

6 2 Making Decisions

2.5.1 Syntax

if (expression)

{
statement(s); // if/true clause
}
else
{
statement(s); // else/false clause
}

2.5.2 Example

if (hoursWorked <= 40.0)

{
regularPay = hoursWorked * payRate;
overtimePay = 0.0;
}
else // hoursWorked > 40
{
regularPay = 40.0 * payRate;
overtimePay = (hoursWorked - 40.0) * 1.5 * payRate;
}

2.6 Nested if Statements

An if or if/else statement can be nested inside another if statement.

2.6.1 Example

Suppose we are developing a banking program that determines whether a
customer qualifies for a special interest rate on a loan. There are two conditions
for qualification:

1. The customer must currently be employed.
2. The customer must have recently graduated from college (in the past two
years).

if (isEmployed)

{
if (yearsSinceGraduation <= 2)
{
cout << "You qualify for the special interest rate." << endl;
}

[V R O

AW N =

© 0 N o oA W N =

2.8 The switch Statement 7
2.7 Logical Operators

We can use logical operators to form more complex Boolean expressions from
simpler expressions.

2.7.1 Operators

Logical NOT (!): Reverses the truth of its operand.
Logical AND (&&): Combines two expressions into one. Both sub-
expressions must be true for the overall expression to be true.

e Logical OR (| |): Combines two expressions into one. One or both sub-
expressions must be true for the overall expression to be true.

2.7.2 Example of Logical AND

if (score >= 90 && score <= 100)
{

grade = ’A’;
}

2.7.3 Example of Logical OR

if (temperature < O || temperature > 100)
{

cout << "Warning: Temperature is out of range!" << endl;
}

2.8 The switch Statement

The switch statement allows multi-way branching based on the value of an
integer expression.

2.8.1 Syntax

switch (IntegerExpression)
{
case ConstantExpression:
statement (s);
break;
// more cases...
default:
statement(s);

-

w

I

8

2 Making Decisions

2.8.2 Example

char grade = ’A’;

switch (grade)

{

case ’A’:

case ’a’:
cout << "Excellent work!" << endl;
break;

case ’B’:

case ’b’:
cout << "Good job!" << endl;
break;

default:
cout << "Keep trying!" << endl;

AW N =

3

Functions

3.1 Modular Programming

Functions are commonly used to break a problem down into small manageable
pieces.

3.1.1 Advantages of Modular Programming

Simplifies the process of writing programs
Avoids redundancy

Facilitates software reuse

Improves the maintainability of programs

3.2 Defining and Calling Functions

When creating a function, you must write its definition. A function executes
when it is called.

3.2.1 Function Definition

A function definition contains the statements that perform the task of the
function.

3.2.2 Syntax

return_type function_name(parameter_list)
{

// body of the function
}

-

M)

10 3 Functions

3.3 Function Prototypes

A function prototype is a statement that declares a function, its return type,

and the number and types of its parameters.

3.3.1 Syntax

return_type function_name(parameter_list);

3.3.2 Example

// Function prototype
void displayMessage();

// Function definition
void displayMessage()
{
cout << "Hello from the function displayMessage." << endl;

}

3.4 Passing Arguments to Functions

When a function is called, the program may send values into the function.

3.4.1 Parameters and Arguments

e Arguments: Values passed to the function.
e Parameters: Variables in the function that receive the arguments.

3.4.2 Example

void displayValue(int num)
{

cout << "The value is " << num << endl;

}

// Function call
displayValue(5);

3.7 Returning a Value from a Function 11
3.5 Passing Multiple Arguments

Functions can accept multiple arguments, and they must be passed in the
correct, order.

3.5.1 Example

void showSum(int numl, int num2, int num3)
{

int sum = numl + num2 + num3;

cout << "The sum is " << sum << endl;

// Function call
showSum(3, 4, 5);

3.6 Passing Data by Value

When an argument is passed to a function, it is passed by value by default.

e A copy of the argument’s value is made for the function to use.
e Changes to the parameter do not affect the original argument.

3.6.1 Example

void changeMe(int myValue)

{
myValue = 100;
cout << "Inside changeMe, myValue is " << myValue << endl;
}
int main()
{
int number = 12;
cout << "Before calling changeMe, number is " << number << endl;
changeMe (number) ;
cout << "After calling changeMe, number is " << number << endl;
return O;
}

3.7 Returning a Value from a Function

A function can return a value back to the statement that called it.

S N

© ® N O w A W N e

—
o

12 3 Functions

3.7.1 Example

int sum(int numl, int num2)

{

return numl + num2;

}

// Function call
int total = sum(5, 10);

3.8 Exercises

1. Write a function called multiply that takes two integers and returns their
product.

2. Modify the changeMe function to use a reference parameter so that the
original argument is changed.

3. Explain the difference between passing an argument by value and by ref-
erence.

3.9 Returning a Boolean Value

A function can return a boolean value, which is useful for decision-making.

3.9.1 Example

bool isEven(int number)

{
return (number % 2 == 0);
}
// Function call
if (isEven(4))
{
cout << "The number is even." << endl;
}

3.10 Default Arguments

A default argument is an argument that is passed automatically to a param-
eter when an argument is not provided in the function call.

3.11 Using Reference Variables as Parameters

3.10.1 Example

13

void displayMessage(string message = "Hello, World!")
{

cout << message << endl;

// Function calls
displayMessage(); // Outputs: Hello, World!
displayMessage("Hi there!"); // Outputs: Hi there!

3.11 Using Reference Variables as Parameters

Reference variables allow a function to modify the argument passed to it.

3.11.1 Example

void doubleNumber (int &refVar)

{

refVar *= 2;

int main()

{
int value = 5;
doubleNumber (value) ;

cout << "Value is now " << value << endl; // Outputs: Value is now

10
return O;

4

Input Validation and Menus

4.1 Validating User Input

Input validation involves inspecting input data given to a program by the user
and determining if it is acceptable.

Ensure numbers/characters are within the range of acceptable values.
Check that data entered is reasonable.

Validate that a valid menu choice was selected.

Prevent division by zero and other invalid operations.

4.1.1 Example

int getValidatedInput ()

{
int number;
cout << "Enter a number between 1 and 10: ";
cin >> number;

while (number < 1 || number > 10)

{

cout << "Invalid input. Please enter a number between 1 and 10:

".
s

cin >> number;

return number;

[

N

w

20

21

22

23

24

25

26

27

28

29

30

31

32

33

4.2 Menus 15

4.2 Menus

A menu-driven program allows the user to determine the course of action by
selecting from a list of choices.

4.2.1 Menu-Driven Program Organization

Display the menu as a list of numbered or lettered choices.
Prompt the user to make a selection.

Test user input to determine which menu choice was selected.
Execute code that performs actions for the specific menu choice.

W N

4.2.2 Example

void displayMenu()

{
cout << "1. Add new record" << endl;
cout << "2. Delete record" << endl;
cout << "3. View record" << endl;
cout << "4. Exit" << endl;

}

int main()

{
int choice;
do
{

displayMenu() ;
cout << "Enter your choice: ";
cin >> choice;

switch (choice)
{
case 1:
// Code to add new record
break;
case 2:
// Code to delete record
break;
case 3:
// Code to view record
break;
case 4:
cout << "Exiting the program." << endl;
break;
default:
cout << "Invalid choice. Please try again." << endl;

16 4 Input Validation and Menus

34 }

35 } while (choice != 4);
36

37 return O;

© L N e oA W N =

[SI

w

5

Overloading Functions and Stubs

5.1 Overloading Functions

C++ allows you to have multiple functions with the same name as long as
their parameter lists are different.

5.1.1 Example

int max(int a, int b)

{
return (a > b) ? a : b;
}
double max(double a, double b)
{
return (a > b) ? a : b;
}

int max(int a, int b, int c)

{

return max(max(a, b), c);
}
5.1.2 Usage

int x = max(3, 7); // Calls max(int, int)
double y = max(5.5, 2.3); // Calls max(double, double)
int z = max(1, 2, 3); // Calls max(int, int, int)

1< S N R

[R S N

18 5 Overloading Functions and Stubs

5.2 Stubs and Drivers

Stubs and drivers are helpful tools in developing, testing, and debugging pro-
grams that use functions.

5.2.1 Stubs

A stub is a dummy placeholder function that is called instead of the actual
function it represents.

5.2.2 Example of a Stub

void complexFunction()

{
// TODO: Implement this function
cout << "complexFunction() called." << endl;

5.2.3 Drivers

A driver is a function that tests another function by calling it with test data.

5.2.4 Example of a Driver

void testIsEven()

{
cout << "Testing isEven() function:" << endl;
for (dnt i = -1; i <= 1; ++i)
{
cout << "isEven(" << i << ") = " << boolalpha << isEven(i) <<
endl;
}

6

Additional Topics

6.1 Comparing Characters and Strings

6.1.1 Comparing Characters

When two characters are compared, their ASCII values are compared.

6.1.2 Example

char letteril A
char letter2 = ’B’;

if (letterl < letter2)
{
cout << letterl << " comes before " << letter2 << " in ASCII." <<
endl;

6.1.3 Comparing Strings

C++ string objects can be compared using relational operators.

6.1.4 Example

string namel
string name2

"Alice";
I|Bobll ;

if (namel < name2)
{
cout << namel << " comes before " << name2 << " alphabetically." <<
endl;

20 6 Additional Topics

6.2 The Conditional Operator

The conditional operator 7: provides a shorthand method of expressing a
simple if/else statement.

6.2.1 Syntax

expressionl ? expression2 : expression3;

6.2.2 Example

int max = (a > b) ? a : b;

